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Abstract 

The curvilinear invariant quaternion formalism is examined for curved space time. 
Einstein's gravitation equation is shown to have a simple and natural form in this nota- 
tion. The hypermass generalization of particle mass, which was generated in our studies 
of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. 
Covariance requires that the gravitational constant be generalized to an invariant 
quaternion when the mass is. The modification appears minor and of no importance 
cosmologically, unless one begins considering time and mass dependence of G. 

1. Introduction 

Many notations and formalisms have been developed which describe 
the same physical laws, quantum and classical (Utiyama, 1956; Brown, 
1962; Newman and Penrose, 1962; Sachs, 1968; Carmeli, 1972). The 
quaternion formalism invented by Hamilton in the previous century 
predates the vector formalism, but has been largely overshadowed by the 
latter since the beginning of this century (Bork, 1966). The quarternion 
formalism has been recently reviewed by Rastall (1964). It has continued 
over the years to attract a small number of devotees [see references in 
Edmonds (1972)]. 

Our recent work with this formalism (Edmonds, 1972) has led to a 
generalization of the Dirac equation, produced by adding hypermass 
elements to the usual inertial mass. This generalization is not physically 
well motivated. It is motivated largely by the structure of  the Dirac equation 
in quaternion notation, in which the four components of the wave function 
seem to be a degenerate state of  a system with eight wave function com- 
ponents. This 'degeneracy' is lifted by slightly modifying the Dirac equation 
by introducing quaternion mass. The resulting generalized Dirac equation 
(Edmonds, 1973a) 

i h O ~ = ~ k v m c ,  ihO* ~/v=tkam* e (1.1) 
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represents a spin-�89 particle with a new spin-like quantum number, tumble 
(Edmonds, 1973b). The four particle rest states become spin-up tumble-up, 
spin-down tumble-up, spin-up tumble-down, and spin-down tumble-down, 
with four corresponding states for negative energy (antiparticle) solutions. 
The invariant hypermass, m~ § mkek, has only two independent parts 
m ~ and m =-m k for an isotropic space. We have demonstrated how the 
usual results of quantum theory look in this formalism by solving the 
Dirac hydrogen atom (Edmonds, 1973c) using quaternion wave functions. 

At present the physical relevance of the hypermass concept is untested. 
It obviously has consequences for the muon electron and two neutrino 
problems. The details of these consequences remain to be explored, but 
hopefully some quantitative results will be forthcoming. We have also 
considered the formal problem of quaternion observables in quantum 
theory (Edmonds, 1973d), which seems incompatible with a single particle 
approximation. 

In an earlier paper (Edmonds, 1972), we made a tentative effort to 
develop a curved space-time quaternion formalism. The approach taken 
there proved unproductive. Rastall (1962) has reviewed the conventional 
quaternion formulation of curved space time. In this pape r we build on his 
formulation, using our earlier notation, to write Einstein's gravitation 
equation in quaternion form. We then show how the hypermass concept, 
which came out of our quantum studies, can be used to generalize the 
gravitation equation in a covariant way. This generalization will likely 
not lead to any startling cosmological consequences since quantum electro- 
dynamics gives the Lamb shift to one part in 108. However, at this stage 
one just does not know. Such things as high flux density hypermass neutrinos 
could possibly produce cosmic consequences in the evolution of the 
universe. 

It is of some interest to note that in this notation Einstein's gravity 
equation (as was found for Dirac's quantum equation) takes a simple and 
natural form, again reinforcing the conviction that the complex quaternions 
are nature's natural numbers. 

2. Curved Space-Time Quaternions 

In flat space-time, using cartesian coordinates, an event can be represented 
by x = xUeu, x ~  et, {x ~} = {x , y , z ) .  For curvilinear coordinates or curved 
space-time this idea must be generalized. We can do this simply as follows. 
We introduce the Invarianee Principle. By definition this states that all 
physical laws written in quaternion notation consist entirely of invariant 
qnaternions, quaternion tensors, and scalars. The invariance is with respect 
to any arbitrary invertable, smooth, space-time transformation. This 
leads to considering at least four distinct kinds of quaternions, as we shall 
see. The one of interest for gravitation is the 4-vector invariant quaternion 
defined as follows: 

V = _ VUb~ (2.1) 
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The basis elements bu are defined to be linear combinations of the 
quaternion elements e u, and the vector components V u transform as 
contravariant 4-vector components under coordinate transformation from 
{x") to (x'"), i.e., 

b. - b~ ~) e~ (2.2) 

Ox'~ V ~ (2.3) 
V'U -_ Ox v 

In order for the quaternion V to be invariant we require that {b(~ ~)} 

transform as covariant 4-vector components 

0 ~  b~,) = x h ~  (2.4) 
- O x ' "  ~ 

so that 

,~, , Ox 'u . .  O x  ~" b ( , )  
V =  V b ,  = V ~ - s z ~  b ~ '  5 - ~ e ,  = 6~ ~ V ~ e ,  = VV b~ (2.5) 

OX OX 

As a consequence, the invariant quaternion e~ can be thought of as a 
4-vector quaternion since 

e~ = b~'~) b, (2.6) 

The raising (and lowering) of  indices p is done with 

(b. Ibm) -- g~  - �89 + b~ + b~* b.), g"~ g~  - ~z" - gz" (2.7) 

and the raising (and lowering) of indices (~) is done with 

1 

It follows that 

and 

/,(~)/.(B) ~ - -  k ( ~ ) / ,  (2.9) 

b~) = g"~ q(~,) b(f ) (2.10) 

If  we use pseudocartesian coordinates, i.e., g~ -+ q(~,) as the curvature 
approaches zero, we see that the curvature information is contained in the 
ten quantities g,~(x)  or equivalently in the sixteen quantities b~)(x) .  

For fiat space-time one can always find a coordinate system for which 
b(~) _- "~x(~), i.e., one in which the e, form the 4-vector basis. According to 
the Ricci identity, intrinsically curved space time is characterized by the 
non-commutativity of  covariant differentiation on a component of  any 
4-vector. Specifically 

R~,~ V~. ~ 0 (2.11) D~D r V ~ - D ~ D ~ V ~ =  ~" 
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where R~.~ is the curvature tensor (Rindler, 1969). We define 

Dv D .  v~ - v~z.~ a- ~ - v~ , .  - on v~ (2.12) 

and 

D~(D, V~) = (D, V~)., - (D,. V~)rL - (D, VO r~., (2.13) 

From the relationships between the Christoffel symbols of the first and 
second kind, and guy and equation (2.9), we have 

F ~  = g~Z[#v, zr] = N"~;~ ~-k l(0~t 6vr~ ~' -}- O,g, ,  -- O, guv) (2.14) 
), _ _  1 2 ( , 6 ' )  F~,~, - ~b (O n b,,(a ) + 0 u bu(a) ) 

+ �89 "~(t~) '~ (~) O~ b,,(~o) b(B)[b ~ (O~b,,(~)- 
(a) + b~ (0, b~(~) - O~ b,(~))] (2.15) 

+ ~b'~(~)rb(13)rO b O, bv(,)) "~ t la k v u(B)-- 

+ b~tJ)(O, b,~o) - 0,~ b,(~))] (2.16) 

In flat space-time (accelerated frames, but no gravity) there exists a 
transformation back to cartesian coordinates 

OX'B OX'(:O 
b (') = - - ' ~ ( ~ ' )  = = Oux '(') (2.17) 

" Ox u '-'~ Ox u 

and therefore 

O, b (~) = a~ Ov x '(') = O~ O~ x '(') = O~ b(~ ) (2.18) 

As a result we get 

F ~  = bZ(t~ b~(B) ) and D,  b(~ ") = 0 (2.19) 

We readily see the inequivalence of accelerated frames and real gravitational 
fields. 

3. The Gravitation Field Equation 

We are naturally led (by the fact that curvature implies D~ Dv - Dv D. 
operating on a 4-vector does not give zero) to a field equation of the type 

(D, Dv -- D~ DAb<g ) ~ 0 (3.1) 
From the quaternion invariance principle we must write this in invariant 

quaternion form. The simplest way to do this is 

b"(D,  D ,  - D~ D,~) b ~ = - x b "  M~,~ b ~ (3.2) 

This is a natural candidate for the curvature-inducing field equation. 
The equations which seem to describe physical reality are more restricted 

than those allowed by the invariance principle alone. We introduce a second 
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basic postulate called the Loren t z  Principle. We make a mathematical 
transformation of the invariant quaternion equation. This transformation 
is mathematical and not physical though historically it was developed from 
so-called Lorentz transformation between inertial frames in fiat space-time, 
requiring the form invariance of allowed laws under such transformations. 
The generalization to arbitrary transformation covariance caused Einstein 
to adopt the name General Relativity, a misnomer which has stuck in the 
literature of the Western World. The equivalence principle notwithstanding, 
accelerated reference frames belong to the relativity theory and do not 
have any real connection with curved space time. The mathematics just 
look superficially similar. The 'similarity' was apparently very helpful to 
Einstein, but can be misleading since there are many subtle differences. 

For the quaternion formalism, the Lorentz principle can be stated as 
follows. There are four (at least) invariant, quaternion types, distinguished 
by their Lorentz properties 

4-vector V =. V"  b .  ~ V '  =- L*  VL,  

axial 4-vector ~ - ~" a.  -+ ~'  - L* eL,  

a-spinor O. - O~" ~. -+ ~k.' ~ L* ~., 

v-spinor O~ - 0~" l. -+ O~' -= L* ~ ,  

b. = b~ ") (x) e. 

a. = a~s (x) e~ 

~f. = Y(.') (x) e. 

l ,  = (3 .3 )  

here L =L(~)e~, L L  + =  - eo = L * L .  Only those equations which are form 
invariant under the above formal Lorentz transformations can describe 
physical laws. 

For example: 

W '  V '  - (L* W L ) ( L *  VL) = L* W L L *  V L  (3.4) 
whereas 

w'* v" -- (L* WL)*(L* VL) =L* W*L**L* VL =L*(W* V)L (3.5) 
Therefore, to satisfy both the invariance principle and Lorentz principle, 

we would guess that the gravity equation takes the form 

bU+(D,, Dv -- D~ D , )  b ~ = -tea"* M,~  a" (3.6) 

where tr is a coupling constant and M,~  relates to matter in the universe. 
The application of the invariance and Lorentz principles together with 
the definition of curvature (Riemannian space) do not give equation (3.6) 
uniquely, but it is the simplest compatable equation. 

We show now that it almost gives Einstein's gravitation equation. To 
do this we note 

~, - u ( , ) u ,  e o =~ b}'~) = 6 f  ( 3 . 7 )  
and 

~(')e - t,(,)/,, t~ (3.8) - -  u / t  u ( ~ )  v v 

Equation (3.6) can be written: 

bu(~)tt.,(o) _ 1.~(ts)~. -+ eo = _~cb,(,) 31,v b ~(B) e,  + e a (3.9) kUlvu e'l~v ) *Zo~ 
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Therefore, from the independence of the e~'s we have the possibility 

b~(~,)ct.~, l.v ",_ ..1.~,(~,) ~x t.,, (3.10) ~.t.,(O)[V/t - -  u ( B ) [ l t v )  - -  - - ~ u  ~ v l u v t . , ( O )  

But by the nature of curvature 
a' ~ 7t 3. b(a)lvu - b(a)ru~ = Rzvu b(a) (3.11) 

hence 
b~a)r~u v ~ z ~ (3.12) 

- b(a)luv = R~vu b(r = R~, b~o ) 

We can 'peel off'  the b's in equation (3.10) by using equations (3.7) and 
(3.8) 

b m ~ ) o  t,~ t4a~_ ,~t, t ,~) ~Ar t,~ t,(a) (3.13) a ( ~ )  o,  Jt , ,AI t t,, ( O ) t . , n  - -  - - ~ t . , a ( c O  ,.., ~wt try t " ( B )  " ~  

therefore 
R~, = -xM,~  (3.14) 

We come up against the same problem Einstein faced. Though equation 
(3.14) is the simplest candidate, it can be shown (Bianchi identities) that 

D=R~.= � 8 9  (3.15) 

whereas, if one accepts conservation of energy, we have 

D ~ M , ~ = O  (3.16) 

Equation (3.16) requires that equation (3.14) be replaced by 

R. ,  - �89 R = -tcM,.~ (3.17) 

We can then show that 

R -  o ~ - m(~)rh~ t.z ~ (3.18) x~,g - -  r k u ( ~ ) [ ~ t  t - -  u (~c ) lu ) ,  / 

so that equation (3.17) becomes 
/~(~)  ( /~A ,~ 1 (~r v (B)  ~ A _ _  ~b~ b~,(~)b (b~a)l~.~ b(a)l~z)--~cM~u (3.19) ~= w(=)l~u - -  b(~)luz) - -  

By essentially reversing the process that led to equation (3.14) we obtain 
from equation (3.19) 

bU*(Du D~ - D~ D.)  b ~ = +tcb u+ M.~ b ~ (3.20) 

which differs from equation (3.6) only by the sign reversal of the right-hand 
side ! From the weak field limit and Newton's gravity equation one obtains 
(e.g., Rindler, 1969), 

8~G 
to= c4 (3.21) 

The Lorentz principle to be applied to equation (3.20) requires that we 
define the Lorentz properties of b "* Mu~ b ~ 

M=-b~'-*M~bv--> M ' - L + M L  if M,,~=M,,~ ~ (3.22) 
since 

V,'* V;t = L *  V ,*L**L* VHL =L*(Vr*  Vt~)L = b 'u+ V~, V'~t~b '~ (3.23) 
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For  a matter distribution consisting of  zero pressure gas one has 

M~(x) = po(x) UAx) V~(x), 
dxlt 

U~ = c ds ' ds =_ [(dxjdx)] ~/z (3.24) 

where Po is the local dust rest frame mass density and U u is the 4-velocity. 
We have seen that the usual tensor formulation of Einstein's gravitation 

equation can be converted to quaternion form and that this formulation 
has a very intuitive form. In the following section we generalize Einstein's 
work, using the quaternion formalism, and then convert the generalized 
gravity equation back into tensor notation, since this is more commonly 
used. 

4. Hypermass Generalization o f  the Gravitation Field Equation 

We now consider how equation (3.20) is generalized when the local rest 
frame mass density is an invariant quaternion 

Po -+ P(o~)(x) e~, ~ = 0, 1,2, 3 (4.1) 

We can satisfy the invariance principle simply by writing 

b"* D.~b ~ = +Kb"* U~p(o ~) e~ U~b v (4.2) 

but since L**p~o')e~L * --/: eo we do not satisfy the Lorentz principle. I f  we 
place Po to the right or left orb"* U. U~b ~ the same problem is encountered, 
L and ek do not commute. We seem to have no other choice than to require 
xPo to be proportional to eo so that it commutes with L. This in turn requires 
that the coupling constant x be an invariant quaternion, x = td ~)ea. The 
simplest generalization of the gravity equation is then (D.~ ~- D.  D~ - D~ D.) 

b"* D.~ b ~ = b"* U. ~(~) Po(~) U~ b ~ 

= ~o b"* U. Po(o) U~ b ~ + t~ (k) b"* U. Po(k) U~ b ~ (4.3) 

In tensor notation this gives 

R 10 o - ,,(o) ~,t - ~(~) Mu~(k) (4.4) 

where Mu~(, ~ =- U~po(,) U~. We get back the usual expression except for an 
added source term ~(k)Mu~(k)" For pressureless gas, we see that the four 
divergence of  the right-hand side is still zero as required. With reference to 
the usual cosmological constant we note (suggested by Len Rosen) that if 

Ag~.~ -- ~(k) M.,.(k) (4.5) 
then 

A = i~(~) Po(~) c 2 (4.6) 

5. Conclusion 

The two general postulates we have discussed, the invariance principle 
and the Lorentz principle, have shown that Einstein's gravity equation is a 
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simple and natural choice for space-time curvature. These principles also 
guided us to a generalization of Einstein's equation for hypermass which 
required generalization of  the gravitational coupling constant, G, to a 
quaternion. The resulting minor modification of  the gravity equation 
shows that hypermass is unlikely to have any observable cosmological 
consequences. 

The formalism developed, however, provides the ground work for 
developing relativistic quantum equations in curved space-time and rather 
arbitrary curvilinear coordinate systems. This is very important,  con- 
sidering the nonlinearity of  gravitation and the central importance of  the 
quantum superposition principle. The ultimate foundations of  quantum 
theory have to be compatible with a curved space-time medium even if 
curvature effects have a negligible effect on practical calculations and 
microscopic interactions. The validity of  the superposition principle is also 
important in the continuing investigations of  CP and CPT conservation. 
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